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J .  Phys. A: Math. Gen. 22 (1989) L1075-L1080. Printed in the UK 

LETTER TO THE EDITOR 

Are the cusps in the plots of f(a) a real effect? 

Marek Wolf 
Institute of Theoretical Physics, University of Wroclaw, PL-50.205 Wroclaw, ulice 
Cybulskiego 36, Poland 

Received 30 June 1989 

Abstract. An explicit example where the cusps in the plots of the . f(a ) spectrum appear 
is given. An analysis is provided which gives the support for the claim that these cusps 
are not a computer artefact and they are a signal of the breakdown of the scaling law. 

In recent years progress has been made in describing the strange (fractal) sets occurring 
in many areas of physics, in particular in the theory of dynamical systems and growth 
phenomena. It has been recognised that there exist sets which are not strictly self-similar 
and due to this fact cannot be characterised by the Hausdorff dimension alone. The 
Renyi dimensions (Renyi 1970) D,, q = 1,2 , .  . . were applied to dynamical systems 
and fractal sets by Grassberger (1983), Hentschel and Procaccia (1983) and Grassberger 
and Procaccia (1984). This progress culminated in the introduction of the so-called 
f ( a )  formalism (Benzi er a1 1984, Halsey et al 1986; for a review see Paladin and 
Vulpiani 1987, Levi 1986). Since that time the f ( a )  formalism has been applied to a 
variety of phenomena; let us mention only diffusion-limited aggregation (Halsey et al 
1986, Amitrano er al 1986, Nittmann er a1 1987), the HCnon attractor (Arneodo et al 
1987), and attractors of non-hyperbolic dynamical systems (Politi et al 1988). 

Quite recently much attention has been paid to the practical limitations imposed 
on the determination of Dq. In particular the systematic bias and errors caused by 
the finiteness of the data samples were discussed (Grassberger 1988, Ramsey and Yuan 
1989). Smith (1988) derived the necessary bound on the amount of data required for 
a reliable dimension calculation. Also the problems with the determination of D, for 
negative q were studied (Arneodo er al 1987, Lee and Stanley 1988, Blumenfeld and 
Aharony 1989). 

In this letter we are going to discuss another phenomenon: we claim that the cusps 
in the plots o f f ( a )  are a real effect. We know (Livi and Politi, private communication) 
that the cusps in the plots of f ( a )  were observed previously but they were dismissed 
as a computer artefact. We have encountered these cusps in the plots of f ( a )  for 
natural numbers (Wolf 1988) and here we will present a more detailed analysis of this 
phenomenon. 

Let us consider a measure p with a support A and let { A i }  be a covering of A, 
A E U Ai, such that all Ai are contained in the ball of radius 1. Next, let us form the 
partition function 

where m(1) is the number of covering sets and depends on 1. If the moments x,(/) 
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behave in some regime of 1 and q like a power of I: 

then the function T ( q )  characterises the set A. The generalised dimensions are con- 
nected to r ( q )  via the definition 

x,( I) - 1"4 '  (2)  

and it can be proved that for self-similar sets Do is the usual Hausdorff dimension, 
D ,  is the information entropy and D2 is the correlation exponent. Halsey et a1 (1986) 
proposed using, instead of T (  q ) ,  the Legendre transform of r (  4 ) :  

where q is expressed by a via the relation 
f ( a )  = - r ( q ( a ) )  (4) 

A good exposition of the Legendre transformation can be found in Arnold (1978). In 
order to invert ( 5 )  the derivative of a ( q )  has to be of constant sign: for positive " ' ( 4 )  
the function r ( q )  is termed convex and for negative a ' ( q )  it is termed concave. 

In Wolf (1988) we have looked for the moments ( 1 )  for subsets A( N )  = { 1,2,  . . . , N }  
of natural numbers. The measure of the interval Ai( I) = { i, i + 1 ,  . . . , i + I} E A( N )  of 
length 1 we defined as the number of prime numbers contained in i t  divided by the 
number of prime numbers in A ( N ) :  

where ~ ( x )  denotes the number of prime numbers smaller than x. The sets A( N )  with 
the measure defined by ( 6 )  are very well suited for testing the multifractal formalism 
because the amount of prime numbers within an interval is precisely determined in 
contrast to, e.g., the Hinon attractor, where the measure can be obtained only approxi- 
mately due to the finite number of iterations (Ameodo et a! 1987, Grassberger 1988). 

We have found in appropriate ranges of I and q values the power-like behaviour 
(2)  of the moments x,( 1) for natural numbers. We have calculated f( a )  numerically 
and we have obtained the cusps in their plots, see figure 1. These cusps appear in the 
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Figure 1.  Plots o f f ( a )  for N = 2", 219, . . . , 223. The Figure 2. Plot of f ( a )  obtained from the scaling of 
cusps and right parts ofcurves shift towards the point the moments with respect to N for N = 218, 
a,,, = 1 for increasing N. 219,. . . ,2" and for I = 2". 
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neighbourhood of amin, so they correspond to positive values of q. As remarked by 
Coniglio (1986), the sets which are unbounded can display a scaling with respect to 
the linear sizes of the set. We have checked that this is the case for natural numbers: 
covering different subsets A ( N )  by intervals of the same length 1 we have found the 
scaling of the moments with respect to N for a fixed I :  

x,( N )  - N-"". (7) 

Again we have determined the function T( q )  numerically by fitting straight lines to 
the points (In N,  In x,( N ) )  by the linear regression procedure, and then plotting the 
function f ( a ) ,  see figure 2. Here we see double cusps in the neighbourhood of amax, 
but as we will see later they are also not linked to negative values q. 

At first sight, round-off errors can be a possible explanation of the turnbacks of 
a ( q ) .  The problem of the accuracy of computer calculation is not in general an easy 
task; see e.g. Bjorck and Dahlquist (1974). In our case, that part of the calculations 
linked to the determination of the measure represents an integer-number problem and 
can be performed exactly by computer. The floating-point operations appear in the 
determination of xq and then in the least-squares fitting and numerical differentiation. 
We have performed calculations with 20-digit accuracy in the sense that x + 1 0 - 2 0 ~  # x. 
The sums were calculated in order from the smallest term to largest term-there are 
two opposite such orderings respectively for q > 0 and q < 0. The largest number of 
terms in the sum (1) was 4096 and the maximal relative error we estimated to be of 
the order It is seen from figure 3 that it is many orders less than the relative 
changes in the values of a ( q ) .  We have also applied improved algorithms (Bjorck 
and Dahlquist 1974, 0 2.3.5) to calculate the sum, but the difference between the simple 
summation and the improved algorithm was negligible and did not lead to changes in 
the shapes off(  a ) .  We have used the following formula (Bjorck and Dahlquist 9 7.5): 

f( x + 2h) - 8f( x +f ) + 8f( x - h ) -f( x - 2 h ) 
12h 

for the numerical differentiation of T ( q ) .  We have changed the step h from 1.0 to 
0.025 without any changes in the shapes o f f ( a ) .  

As is well known, the subtraction of nearly equal numbers and division by the very 
small numbers can lead to significant loss of accuracy. We have looked for the 
operations appearing in the least-squares method and we have not found such cases. 
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Figure 3. Plot of a ( 9 )  for the example presented in figure 2. 
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a'lq) 

-0.01. 

- 0.02 

After this analysis we come to the conclusion that the cusps in the plots of f ( a )  are 
not due to the round-off errors. What is the explanation for them? The cusps are 
caused by the turnbacks of a(q)-in figure 3 we have plotted an example of a ( q )  for 
the case of scaling of moments with respect to N for N = 2IR, 219,. . . , 223 and for 
f = 212. Let us stress that the turnbacks appear for positive q. We see that, contrary 
to the general feature of the partition function (see the appendix), a ( q )  is not a 
decreasing function for all q. To explain this contradiction let us recall the formula 
for the least-squares method. If we have a set of points (x,, y,), i = 1 , 2 , .  . . , m, then 
the slope b of the straight line a + bx best fitting these points is given by the formula 
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b =  

In our case y, - In x,( N i )  and b - T (  q ) .  Although each In x, is a convex function of 
q, the function T ( q )  calculated by means of (8)  need not be convex because of the 
minus sign between the two terms in the numerator of (8). (Let us remark that the yi 
do not appear in the denominator.) We link these changes of the sign of the derivative 
of a (  q )  to oscillations in the plots of In xY against In 1. These oscillations were observed 
by Badii and Politi (1984) and Smith et a1 (1986) and they are inherent to lacunar 
fractals. The non-concavity of T ( q )  is evidence of departures from the scaling law (2) .  

By the way, let us remark that usually the points xi are equally spaced, xi - i, and 
the numerator possesses the property that it depends always on an even number of 
yi-for an odd number of yi the middle yi cancels out. 

Recently Lee and Stanley (1988) (see also Lee et af 1989) reported on the phase 
transition in the multifractal spectrum of diffusion-limited aggregation. By phase 
transition these authors mean the existence of such a critical value qc that on the one 
side of it there is a scaling law fulfilled and for q on the other side of qc the moments 
do not scale with 1. Lee and Stanley have plotted (figure 5 ( b )  in their paper) the 
derivative a'( q ) ,  which in the framework of the thermodynamical formalism (Feigen- 
baum 1987) can be interpreted as a specific heat, and they found the sharp peak 
characteristic of the usual phase transitions. In figure 4 the 'specific heat' corresponding 
to a ( q )  from figure 3 is plotted and the points of phase transition are marked by 
arrows. Let us recall that in the usual statistical physics cusps in the plots of some 
thermodynamical quantities are evidence of phase transitions. Lee and Stanley did 

Figure 4. Plot of the derivative of a ( 9 )  from figure 3. The arrows indicate critical points 
where a ' (9 )  = 0. 
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not propose any equation for the determination of the critical point. From our analysis 
it follows that the cusps in the plots o f f ( a )  are evidence of the breakdown of power-law 
scaling and qc can be determined as the point where the turnbacks in f ( a )  appear: 

The second equation picks up the true points of phase transition because it rules out 
the domains of q where a ( q )  reaches its asymptotic constant values. 

I would like to thank Drs R Livi and A Politi for discussions. It is a pleasure to thank 
Kate Ochodk6wna for the reading and polishing of the manuscript. 

Appendix 

From the definition (1) we get: 

since In p i  s 0 for a probabilistic measure. We now obtain 

Let us apply the Cauchy-Schwarz inequality: 

Putting here ai = p?”, bi = pp” In p,, we obtain 

To perform the Legendre transformation, T“(q) should also be of constant sign. Let 
us rewrite the scaling law (2) in the form 

~ ~ ( 1 )  = A(q)l“” 

from which we get: 

Because of the prefactor A(q), it follows that ( A l )  is not sufficient alone to ensure the 
concavity of ~ ( q ) - - o n l y  in the limit I + 0 or I + Q) do we obtain that T”( q)  is of constant 
sign. Practically it is not possible to reach the asymptotes, and in some cases even if 
the scaling law is fulfilled the bad behaviour of A(q) can lead to cusps in f ( a ) .  Let 
us add that because the Legendre transformation is involutive (Arnold 1978), i.e. its 
square is equal to the identity, it follows that the information supplied by f ( a )  is the 
same as supplied by r ( q ) :  the Legendre transformation of f ( a )  reproduces T(q). 
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